Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Около трапеции KLMN описана окружность, причём основание KN является её диаметром. Известно, что KN = 4, LM = 2. Хорда MT пересекает диаметр KN в точке S, причём KS : SN = 1 : 3. Найдите площадь треугольника STN.

Вниз   Решение


В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.

ВверхВниз   Решение


В треугольнике ABC точка M лежит на стороне AC, а точка L на стороне BC расположена так, что  BL : LC = 2 : 5.  Прямая, проходящая через точку L параллельно стороне AB, пересекает отрезок BM в точке O, причём  BO : OM = 7 : 4.  Найдите отношение, в котором точка M делит сторону AC.

ВверхВниз   Решение


На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что  A1C1 || AC.

ВверхВниз   Решение


На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

ВверхВниз   Решение


Дан ромб со стороной a и острым углом α.
Найдите радиус окружности, проходящей через две соседние вершины ромба и касающейся противоположной стороны ромба или её продолжения.

ВверхВниз   Решение


На рисунке изображено, как изменялся курс тугрика в течение недели. У Пети было 30 рублей. В один из дней недели он обменял все свои рубли на тугрики. Потом он обменял все тугрики на рубли. Затем он ещё раз обменял все вырученные рубли на тугрики, и в конце концов, обменял все тугрики обратно на рубли. Напишите, в какие дни он совершал эти операции, если в воскресенье у него оказалось 54 рубля. (Достаточно привести пример.)

ВверхВниз   Решение


В пятиугольнике ABCDE углы ABC и AED – прямые,  AB = AE  и  BC = CD = DE.  Диагонали BD и CE пересекаются в точке F.
Докажите, что  FA = AB.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.

Вверх   Решение

Задачи

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 772]      



Задача 55430

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Из точки P проведены две касательные к окружности, диаметр MN которой равен 24. Одна из них касается окружности в точке M, а вторая пересекает прямую MN в точке Q, при этом отрезок MP больше 25. Найдите площадь треугольника MPQ, если его периметр равен 486.

Прислать комментарий     Решение


Задача 55484

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Докажите, что катет прямоугольного треугольника равен сумме радиуса вписанной окружности и радиуса вневписанной окружности, касающейся этого катета.

Прислать комментарий     Решение


Задача 57877

Темы:   [ Симметрия и построения ]
[ Две касательные, проведенные из одной точки ]
[ Биссектриса угла ]
Сложность: 4
Классы: 8,9,10

Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что  ∠AXM = 2∠BXN.

Прислать комментарий     Решение

Задача 66676

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Радикальная ось ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4
Классы: 8,9,10

Автор: Белухов Н.

Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.
Прислать комментарий     Решение


Задача 66783

Темы:   [ Вписанные и описанные окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 9,10,11

Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.
Прислать комментарий     Решение


Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .