ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 181]      



Задача 108044

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9

Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.

Прислать комментарий     Решение

Задача 109956

Темы:   [ Свойства симметрий и осей симметрии ]
[ Правильные многоугольники ]
[ Вспомогательные подобные треугольники ]
[ Композиции симметрий ]
Сложность: 4
Классы: 8,9,10

Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.

Прислать комментарий     Решение

Задача 115624

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC, AA1, BB1 и CC1 – его биссектрисы. Известно, что величины углов A, B и C относятся как  4 : 2 : 1.  Докажите, что  A1B1 = A1C1.

Прислать комментарий     Решение

Задача 67023

Темы:   [ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Простые числа и их свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

Прислать комментарий     Решение

Задача 109560

Темы:   [ Раскраски ]
[ Правильные многоугольники ]
[ Задачи с ограничениями ]
Сложность: 4+
Классы: 8,9,10,11

В правильном (6n+1)-угольнике K вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .