|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных. |
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1023]
Докажите, что если a1 ≥ a2 ≥ ... ≥ an, b1 ≥ b2 ≥ ... ≥ bn, то наибольшая из сумм вида a1bk1 + a2bk2 + ... + anbkn
(k1, k2, ..., kn – перестановка чисел
Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера: V – E + F = 2.
Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно n –1 раз и не проводя никакое ребро дважды.
Можно ли начертить, не отрывая карандаша от бумаги (одним росчерком)
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1023] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|