Страница:
<< 102 103 104 105
106 107 108 >> [Всего задач: 1007]
|
|
Сложность: 3 Классы: 5,6,7
|
Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что если a1 ≥ a2 ≥ ... ≥ an, b1 ≥ b2 ≥ ... ≥ bn, то наибольшая из сумм вида a1bk1 + a2bk2 + ... + anbkn
(k1, k2, ..., kn – перестановка чисел
1, 2, ..., n), это сумма a1b1 + a2b2 + ... + anbn, а наименьшая – сумма a1bn + a2bn–1 + ... + anb1.
|
|
Сложность: 3 Классы: 5,6,7,8
|
Сто сидений карусели расположены по кругу через равные
промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья
одного и того же цвета расположены подряд и пронумерованы 1, 2, 3,
... по часовой стрелке. Синее сиденье № 7 противоположно красному
№ 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели
жёлтых сидений, сколько синих и сколько красных.
[Формула Эйлера]
|
|
Сложность: 3+ Классы: 7,8,9
|
Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера: V – E + F = 2.
Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно n –1 раз и не проводя никакое ребро дважды.
Страница:
<< 102 103 104 105
106 107 108 >> [Всего задач: 1007]