ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1007]      



Задача 117016

Темы:   [ Произвольные многоугольники ]
[ Степень вершины ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3
Классы: 5,6,7

Автор: Жуков Г.

Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?

Прислать комментарий     Решение

Задача 61385

Темы:   [ Классические неравенства (прочее) ]
[ Перестановки и подстановки (прочее) ]
[ Инварианты и полуинварианты ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что если   a1a2 ≥ ... ≥ an,   b1b2 ≥ ... ≥ bn,   то наибольшая из сумм вида   a1bk1 + a2bk2 + ... + anbkn     (k1, k2, ..., kn – перестановка чисел
1, 2, ..., n),  это сумма   a1b1 + a2b2 + ... + anbn,   а наименьшая – сумма   a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Задача 67168

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Комбинаторика (прочее) ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных.
Прислать комментарий     Решение


Задача 30759

 [Формула Эйлера]
Темы:   [ Планарные графы. Формула Эйлера ]
[ Деревья ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера:  V – E + F = 2.

Прислать комментарий     Решение

Задача 30809

Темы:   [ Обход графов ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9

Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно  n –1  раз и не проводя никакое ребро дважды.

Прислать комментарий     Решение

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .