ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1007]      



Задача 31092

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Можно ли начертить, не отрывая карандаша от бумаги (одним росчерком)
  а) квадрат с диагоналями?
  б) шестиугольник со всеми диагоналями?

Прислать комментарий     Решение

Задача 31093

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Существует ли ломаная, пересекающая все рёбра картинки по одному разу?

Прислать комментарий     Решение

Задача 31096

Темы:   [ Степень вершины ]
[ Обход графов ]
Сложность: 3+
Классы: 6,7,8

Доказать, что связный граф можно обойти, проходя по каждому ребру дважды.

Прислать комментарий     Решение

Задача 35362

Темы:   [ Подсчет двумя способами ]
[ Деревья ]
Сложность: 3+
Классы: 7,8

У Царя Гвидона было 5 сыновей. Среди его потомков 100 имели каждый ровно по 3 сына, а остальные умерли бездетными.
Сколько потомков было у царя Гвидона?

Прислать комментарий     Решение

Задача 35392

Темы:   [ Рекуррентные соотношения ]
[ Треугольник Паскаля и бином Ньютона ]
[ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Вялый М.Н.

Последовательность {an} определяется правилами:  a0 = 9,    .
Докажите, что в десятичной записи числа a10 содержится не менее 1000 девяток.

Прислать комментарий     Решение

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .