ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Остроугольный треугольник $ABC$ вписан в окружность $\Omega$. Пусть $H$ и $M$ – точка пересечения высот и середина стороны $BC$ соответственно. Прямая $HM$ пересекает окружность $\omega$, описанную около треугольника $BHC$, в точке $N\not=H$. На дуге $BC$ окружности $\omega$, не содержащей точку $H$, нашлась точка $P$ такая, что $\angle HMP=90^{\circ}$. Отрезок $PM$ пересекает $\Omega$ в точке $Q$. Точки $B'$ и $C'$ симметричны точке $A$ относительно точек $B$ и $C$ соответственно. Докажите, что описанные окружности треугольников $AB'C'$ и $PQN$ касаются. Решение |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 345]
Дан параллелограмм ABCD (AB < BC). Докажите, что описанные окружности треугольников APQ для всевозможных точек P и Q, выбранных на сторонах BC и CD соответственно так, что CP = CQ, имеют общую точку, отличную от A.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 345] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|