ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Дидин М.

Петя загадал положительную несократимую дробь $x = {m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$?

   Решение

Задачи

Страница: << 239 240 241 242 243 244 245 >> [Всего задач: 1308]      



Задача 35627

Темы:   [ Обыкновенные дроби ]
[ Принцип Дирихле (прочее) ]
[ Теория множеств (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9,10

Хозяйка испекла для гостей пирог. К ней может прийти либо 10, либо 11 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну как между 10, так и между 11 гостями?

Прислать комментарий     Решение

Задача 67307

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 6,7,8,9,10,11

Автор: Дидин М.

Петя загадал положительную несократимую дробь $x = {m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$?
Прислать комментарий     Решение


Задача 78818

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Необычные конструкции ]
Сложность: 4-
Классы: 8,9,10

В городе "Многообразие" живут n жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более чем один житель может начать новую жизнь: перессориться со всеми своими друзьями и подружиться со всеми своими врагами. Доказать, что все жители могут подружиться.
Примечание. Если A — друг B, а B — друг C, то A — также друг C. Предполагается также, что среди любых троих жителей хотя бы двое дружат между собой.
Прислать комментарий     Решение


Задача 111853

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Кооперативные алгоритмы ]
Сложность: 4-
Классы: 7,8,9

Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?
Прислать комментарий     Решение


Задача 32086

Темы:   [ Средние величины ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 6,7,8,9

Компьютер может производить одну операцию: брать среднее арифметическое двух целых чисел. Даны три числа: m, n и 0, причём m и n не имеют общих делителей и  m < n.  Докажите, что с помощью компьютера из них можно получить
  а) единицу;
  б) любое целое число от 1 до n.

Прислать комментарий     Решение

Страница: << 239 240 241 242 243 244 245 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .