|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Из 54 красных и 54 белых брусков 1×1×2 сложили куб 6×6×6. Какое наибольшее количество красных клеточек могло оказаться на поверхности куба? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 63]
Существует ли треугольная пирамида, среди шести рёбер которой:
Какое наибольшее количество красных клеточек могло оказаться на поверхности куба?
Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?
В нашем распоряжении имеются "кирпичи", имеющие форму, которая получается следующим образом: приклеиваем к одному единичному кубу по трём его граням, имеющим общую вершину, ещё три единичных куба, так что склеиваемые грани полностью совпадают. Можно ли сложить прямоугольный параллелепипед 11×12×13 из таких "кирпичей"?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 63] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|