ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).

   Решение

Задачи

Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 769]      



Задача 66934

Темы:   [ ГМТ - прямая или отрезок ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Гомотетия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
[ Радикальная ось ]
Сложность: 5
Классы: 9,10,11

Авторы: Khurmi A., Sudharshan K.V.

Дан вписанный в окружность $\Omega$ четырехугольник $ABCD$. На диагонали $AC$ берутся пары точек $P$, $Q$ таких, что лучи $BP$ и $BQ$ симметричны относительно биссектрисы угла $B$. Найдите геометрическое место центров окружностей $PDQ$.
Прислать комментарий     Решение


Задача 110157

Темы:   [ Производная и кратные корни ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Признаки и свойства касательной ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 9,10,11

Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .
Прислать комментарий     Решение


Задача 111839

Темы:   [ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Две касательные, проведенные из одной точки ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 9,10

Две окружности σ1 и σ2 пересекаются в точках A и B . Пусть PQ и RS – отрезки общих внешних касательных к этим окружностям (точки P и R лежат на σ1 , точки Q и S – на σ2 ). Оказалось, что RB|| PQ . Луч RB вторично пересекает σ2 в точке W . Найдите отношение RB/BW .
Прислать комментарий     Решение


Задача 73603

Темы:   [ Метод координат на плоскости ]
[ Кривые второго порядка ]
[ Инварианты ]
[ Признаки и свойства касательной ]
Сложность: 5+
Классы: 8,9,10,11

Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).
Прислать комментарий     Решение


Задача 109488

Темы:   [ Точка Микеля ]
[ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательная окружность ]
[ ГМТ и вписанный угол ]
Сложность: 5+
Классы: 9,10,11

Точки A' , B' и C' "– середины сторон BC , CA и AB треугольника ABC соответственно, а BH "– его высота. Докажите, что если описанные около треугольников AHC' и CHA' окружности проходят через точку M , отличную от H , то ABM= CBB' .
Прислать комментарий     Решение


Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .