Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 187]
|
|
Сложность: 4+ Классы: 9,10
|
Радикалом натурального числа N (обозначается rad(N)) называется произведение всех простых делителей числа N, взятых по одному разу. Например,
rad(120) = 2·3·5 = 30. Существует ли такая тройка попарно взаимно простых натуральных чисел A, B, C, что A + B = C и C > 1000 rad(ABC)?
|
|
Сложность: 4+ Классы: 8,9,10
|
Решите в натуральных числах уравнение xy = yx при x ≠ y.
|
|
Сложность: 4+ Классы: 8,9,10
|
Пусть натуральные числа x, y, p, n и k таковы, что
xn + yn = pk.
Докажите, что если число n (n > 1) нечётно, а число p нечётное простое, то n является степенью числа p (с натуральным показателем).
|
|
Сложность: 4+ Классы: 8,9,10
|
Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход
разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа,
не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными.
Можно ли за несколько ходов добиться того, что все числа станут белыми?
|
|
Сложность: 5- Классы: 8,9,10,11
|
Докажите, что числа 1, 2, ..., n ни при каком n > 1 нельзя разбить на два множества так, чтобы произведение чисел одного из них равнялось произведению чисел другого.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 187]