ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что произведение четырех последовательных целых чисел в сумме с единицей даёт полный квадрат.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 104]      



Задача 65945

Темы:   [ Обыкновенные дроби ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Известно, что  1/a1/b = 1/a+b.  Докажите, что  1/a²1/b² = 1/ab.

Прислать комментарий     Решение

Задача 66629

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Пусть $a$, $b$, $c$, $d$ и $n$ — натуральные числа. Докажите, что если числа $(a-b)(c-d)$ и $(a-c)(b-d)$ делятся на $n$, то и число $(a-d)(b-c)$ делится на $n$.
Прислать комментарий     Решение


Задача 76483

Темы:   [ Разложение на множители ]
[ Тождественные преобразования ]
[ Средние величины ]
Сложность: 3
Классы: 8,9

Доказать, что произведение четырех последовательных целых чисел в сумме с единицей даёт полный квадрат.

Прислать комментарий     Решение

Задача 78663

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p и q – два простых числа, причём  q = p + 2,  то  pq + qp  делится на  p + q.

Прислать комментарий     Решение

Задача 97944

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Формулы сокращенного умножения (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 104]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .