ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Сходимость итерационного процесса.
Предположим, что функция f (x) отображает отрезок [a;b] в
себя, и на этом отрезке
| f'(x)|
| xn + 1 - xn|
Найти последнюю цифру числа 71988 + 91988. Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3. В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$. Внутри квадрата со стороной 1 расположено n2
точек. Докажите, что существует ломаная, содержащая все эти точки,
длина которой не превосходит 2n.
Проекцией точки A из точки O на плоскость P называется точка A', в которой прямая OA пересекает плоскость P. Проекцией треугольника называется фигура, состоящая из всех проекций его точек. Какими фигурами может быть проекция треугольника, если точка O не лежит в его плоскости? |
Страница: 1 2 3 4 >> [Всего задач: 19]
Проекцией точки A из точки O на плоскость P называется точка A', в которой прямая OA пересекает плоскость P. Проекцией треугольника называется фигура, состоящая из всех проекций его точек. Какими фигурами может быть проекция треугольника, если точка O не лежит в его плоскости?
Докажите, что если плоскости
Докажите, что при центральном проектировании
прямая, не являющаяся исключительной, проецируется в прямую.
Докажите, что если наряду с обычными точками
и прямыми рассматривать бесконечно удаленные, то
а) Докажите, что проективное преобразование P
плоскости, переводящее бесконечно удаленную прямую
в бесконечно удаленную прямую, является аффинным.
Страница: 1 2 3 4 >> [Всего задач: 19]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке