ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников? Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Дьявол предлагает Человеку сыграть в следующую игру. Сначала Человек платит некоторую сумму s и называет 97 троек {i, j, k}, где i, j, k – натуральные числа, не превосходящие 100. Затем Дьявол рисует выпуклый 100-угольник A1A2...A100 с площадью, равной 100, и выплачивает Человеку выигрыш, равный сумме площадей 97 треугольников AiAjAk. При каком наибольшем s Человеку выгодно согласиться?
На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?
В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны.
В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол α ≠ 2π совмещается сам с собой. Доказать, что n – число составное.
Вася в ярости режет прямоугольный лист бумаги ножницами. Каждую секунду он разрезает первый попавшийся кусок случайным прямолинейным разрезом на две части.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|