ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В плоскости дан треугольник A1A2A3 и прямая l вне его, образующая с продолжением сторон треугольника A1A2, A2A3, A3A1 соответственно углы α3, α1, α2.  Через точки A1, A2, A3 проводятся прямые, образующие с l соответственно углы  π – α1,  π – α2,  π – α3. Доказать, что эти прямые пересекаются в одной точке. Все углы отсчитываются от прямой l в одном направлении.

   Решение

Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 829]      



Задача 66305

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Гомотетия помогает решить задачу ]
[ Замечательное свойство трапеции ]
Сложность: 4
Классы: 8,9

Автор: Tran Quang Hung

Вокруг квадрата ABCD описана окружность. Точка P лежит на дуге CD этой окружности, не содержащей других вершин квадрата. Прямые PA, PB пересекают диагонали BD, AC соответственно в точках K, L. Точки M, N – проекции K, L соответственно на CD, а Q – точка пересечения прямых KN и ML. Докажите, что прямая PQ делит отрезок AB пополам.

Прислать комментарий     Решение

Задача 66657

Темы:   [ Преобразования плоскости (прочее) ]
[ Биссектриса угла ]
Сложность: 4
Классы: 9,10,11

Автор: Рябов П.

В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$.
Прислать комментарий     Решение


Задача 66672

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Автор: Нилов Ф.

Окружности $\omega_1$, $\omega_2$ с центрами $O_1$, $O_2$ соответственно лежат одна вне другой. На этих окружностях взяты точки $C_1$, $C_2$, лежащие по одну сторону от прямой $O_1O_2$. Луч $O_1C_1$ пересекает $\omega_2$ в точках $A_2$, $B_2$, а луч $O_2C_2$ пересекает $\omega_1$ в точках $A_1$, $B_1$. Докажите, что $\angle A_1O_1B_1=\angle A_2B_2C_2$ тогда и только тогда, когда $C_1C_2\parallel O_1O_2$.
Прислать комментарий     Решение


Задача 67303

Темы:   [ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теоремы Чевы и Менелая ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

На боковых сторонах $AB$ и $BC$ равнобедренного остроугольного треугольника $ABC$ выбраны точки $M$ и $K$. Отрезки $CM$ и $AK$ пересекаются в точке $E$. Оказалось, что $\angle MEA = \angle ABC$. Докажите, что середины всевозможных отрезков $MK$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 77988

Темы:   [ Метод координат на плоскости ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 9,10,11

В плоскости дан треугольник A1A2A3 и прямая l вне его, образующая с продолжением сторон треугольника A1A2, A2A3, A3A1 соответственно углы α3, α1, α2.  Через точки A1, A2, A3 проводятся прямые, образующие с l соответственно углы  π – α1,  π – α2,  π – α3. Доказать, что эти прямые пересекаются в одной точке. Все углы отсчитываются от прямой l в одном направлении.

Прислать комментарий     Решение

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .