ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Проекции плоского выпуклого многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов соответственно равны 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника равна S. Доказать, что S$ \ge$10.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 69]      



Задача 78145

Темы:   [ Неравенства с площадями ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 6+
Классы: 10,11

Проекции плоского выпуклого многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов соответственно равны 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника равна S. Доказать, что S$ \ge$10.
Прислать комментарий     Решение


Задача 73605

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Композиции проекций ]
[ Сжимающие отображения и неподвижные точки ]
[ Проективная геометрия (прочее) ]
Сложность: 7
Классы: 9,10,11

Пусть l1, l2, ..., ln несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке X1, X2, ..., Xn так, чтобы перпендикуляр, восставленный к прямой lk в точке Xk (для любого натурального k < n), проходил через точку Xk + 1, а перпендикуляр, восставленный к прямой ln в точке Xn, проходил через точку X1.

Попробуйте сформулировать и доказать аналогичную теорему в пространстве.
Прислать комментарий     Решение


Задача 108544

Темы:   [ Метод координат на плоскости ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3
Классы: 8,9

Даны точки  A(-6, 1)  и  B(4, 6).  Найдите координаты точки C, делящей отрезок AB в отношении  2 : 3,  считая от точки A.

Прислать комментарий     Решение

Задача 53538

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD  AB = 3,  BD = 6 .  На продолжении биссектрисы BL треугольника ABD взята точка N, причём точка L делит отрезок BN в отношении  10 : 3,  считая от точки B. Что больше: BN или CL?

Прислать комментарий     Решение

Задача 66205

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

Окружность отсекает от прямоугольника ABCD четыре прямоугольных треугольника, середины гипотенуз которых A0, B0, C0 и D0 соответственно.
Докажите, что отрезки A0C0 и B0D0 равны.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .