ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Угол между касательной и хордой
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что OC ⊥ MN. Решение |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 275]
На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.
Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что OC ⊥ MN.
Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.
Диагонали параллелограмма ABCD пересекаются в точке O.
Описанная окружность треугольника AOB касается прямой BC.
Две окружности w1 и w2 пересекаются в точках A и B. К ним через точку A проводятся касательные l1 и l2 (соответственно). Перпендикуляры, опущенные из точки B на l2 и l1, вторично пересекают окружности w1 и w2 соответственно в точках K и N. Докажите, что точки K, A и N лежат на одной прямой.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|