Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Окружность касается сторон AB и BC треугольника ABC соответственно в точках D и E. Найдите высоту треугольника ABC, опущенную из точки A, если AB = 5, AC = 2, а точки A, D, E, C лежат на одной окружности.

Вниз   Решение


Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.

ВверхВниз   Решение


Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 489]      



Задача 78183

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Тетраэдр и пирамида (прочее) ]
Сложность: 3+
Классы: 11

Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?
Прислать комментарий     Решение


Задача 78481

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 10,11

Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать.
Прислать комментарий     Решение


Задача 78658

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 9,10

Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок обоими своими концами упирался строго внутрь других отрезков?
Прислать комментарий     Решение


Задача 78660

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 10,11

Можно ли расположить на плоскости 1968 отрезков так, чтобы каждый из них обоими концами упирался строго внутрь других отрезков?
Прислать комментарий     Решение


Задача 79238

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9

Пусть на плоскости есть пять точек общего положения, то есть никакие три из них не лежат на одной прямой и никакие четыре — на одной окружности. Докажите, что среди этих точек есть две такие, что они лежат по разные стороны от окружности, проходящей через оставшиеся три точки.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 489]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .