Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


Вниз   Решение


Найти последнюю цифру числа  71988 + 91988.

ВверхВниз   Решение


Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3.

ВверхВниз   Решение


В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.

ВверхВниз   Решение


Внутри квадрата со стороной 1 расположено n2 точек. Докажите, что существует ломаная, содержащая все эти точки, длина которой не превосходит 2n.

ВверхВниз   Решение


Проекцией точки A из точки O на плоскость P называется точка A', в которой прямая OA пересекает плоскость P. Проекцией треугольника называется фигура, состоящая из всех проекций его точек. Какими фигурами может быть проекция треугольника, если точка O не лежит в его плоскости?

ВверхВниз   Решение


Точки P , Q , R и S расположены в пространстве так, что середины отрезков SQ и PR лежат на сфере радиуса a , а отрезки PS , PQ , QR и SR делятся сферой на три части в отношении 1:2:1 каждый. Найдите расстояние от точки P до прямой QR .

ВверхВниз   Решение


Докажите, что две прямые, параллельные третьей, параллельны между собой.

ВверхВниз   Решение


Циркулем и линейкой проведите через данную точку прямую, на которой три данные прямые высекают равные отрезки.

ВверхВниз   Решение


Имеется два набора чисел  a1 > a2 > ... > an  и  b1 > b2 > ... > bn.  Доказать, что  a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 65982

Тема:   [ Квадратные неравенства и системы неравенств ]
Сложность: 3
Классы: 9,10,11

На координатной плоскости изобразите множество точек, удовлетворяющих неравенству  x²y – y ≥ 0.

Прислать комментарий     Решение

Задача 97900

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Ограниченность, монотонность ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Прислать комментарий     Решение

Задача 65176

Тема:   [ Квадратные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10,11

По положительным числам х и у вычисляют  а = 1/y  и  b = y + 1/x.  После этого находят С – наименьшее число из трёх: x, a и b.
Какое наибольшее значение может принимать C?

Прислать комментарий     Решение

Задача 78141

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 9,10,11

Доказать, что если  |ax² – bx + c| < 1  при любом x из отрезка  [–1, 1],  то и  |(a + b)x² + c| < 1  на этом отрезке.

Прислать комментарий     Решение

Задача 78186

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Имеется два набора чисел  a1 > a2 > ... > an  и  b1 > b2 > ... > bn.  Доказать, что  a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .