Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

За круглым столом сидят 13 богатырей из k городов, где  1 < k < 13.  Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.

Вниз   Решение


Через точку O, взятую на стороне правильного треугольника ABC, проведены прямые, параллельные сторонам AB и AC, и пересекающие стороны AC и AB в точках K и L соответственно. Окружность, проходящая через точки O, K и L пересекает стороны AC и AB соответственно в точках Q и P, отличных от K и L. Докажите, что треугольник OPQ — равносторонний.

ВверхВниз   Решение


За круглым столом сидят десять человек, перед каждым – несколько орехов. Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.

ВверхВниз   Решение


Сто номерков выложили в ряд в порядке возрастания: 00, 01, 02, 03, ..., 99. Затем номерки переставили так, что каждый следующий номерок стал получаться из предыдущего увеличением или уменьшением ровно одной из цифр на 1 (например, после 29 может идти 19, 39 или 28, а 30 или 20 – не может). Какое наибольшее число номерков могло остаться на своих местах?

ВверхВниз   Решение


Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз.

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1224]      



Задача 78191

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 9

Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:

a2(a1 - a2 + a3) < 0
a3(a2 - a3 + a4) < 0
.........    
a11(a10 - a11 + a12) < 0

Доказать, что среди этих чисел найдётся по крайней мере 3 положительных и 3 отрицательных.
Прислать комментарий     Решение

Задача 78194

Темы:   [ Обратный ход ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 9,10

Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз.
Прислать комментарий     Решение


Задача 78532

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7

При каких натуральных a существуют такие натуральные числа x и y, что (x + y)2 + 3x + y = 2a?
Прислать комментарий     Решение


Задача 78538

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 9,10

Доказать, что любое чётное число 2n$ \ge$ 0 может быть единственным образом представлено в виде 2n = (x + y)2 + 3x + y, где x и y — целые неотрицательные числа.
Прислать комментарий     Решение


Задача 78562

Темы:   [ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 10,11

Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?
Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .