ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке. Решение |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 74]
Прямая, перпендикулярная гипотенузе AB прямоугольного треугольника АВС, пересекает прямые АС и ВС в точках Е и D соответственно.
С помощью одной линейки опустите перпендикуляр из данной точки на прямую, содержащую данный диаметр данной окружности, если точка не лежит ни на окружности, ни на данной прямой.
Продолжения высот остроугольного треугольника ABC пересекают описанную окружность в точках A1, B1 и C1 соответственно. Докажите, что биссектрисы треугольника A1B1C1 лежат на прямых AA1, BB1, CC1.
В треугольнике ABC проведена высота AH; O — центр описанной окружности. Докажите, что OAH = |B - C|.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 74] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|