ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какое наибольшее значение может принимать выражение Охотник рассказал приятелю, что видел в лесу волка с метровым хвостом. Тот рассказал другому приятелю, что в лесу видели волка с двухметровым хвостом. Передавая новость дальше, простые люди увеличивали длину хвоста вдвое, а творческие – втрое. В результате по телевизору сообщили о волке с хвостом длиной 864 метра. Сколько простых и сколько творческих людей "отрастили" волку хвост? Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части? Сравнив дроби 111110/111111, 222221/222223, 333331/333334, расположите их в порядке возрастания. На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей. Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например, 49/98 = 4/8. Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить". Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой. Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски? Bыпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него. Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь).
Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями: Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство P(x) > x. Определим последовательность {bn} следующим образом: b1 = 1, bk+1 = P(bk) для k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что P(x) = x + 1. На сторонах AB и BC треугольника ABC взяты точки D
и E соответственно, причём AD/DB = BE/EC = 2 и ∠C = 2∠DEB. На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что AQ = AC, BP = BC. Докажите, что если В пространстве заданы три луча: DA, DB и DC,
имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°.
Сфера пересекает луч DA в точках A1 и A2, луч
DB – в точках B1 и B2, луч DC
– в точках C1 и C2.
Найдите площадь треугольника A2B2C2,
если площади треугольников DA1B1,
DA1C1, DB1C1 и
DA2B2 равны соответственно
Тангенсы углов треугольника – целые числа. Чему они могут быть равны? Можно ли в прямоугольник 5×6 поместить прямоугольник 3×8?
В остроугольном треугольнике ABC высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла A проходит через середину отрезка OH. Найдите площадь треугольника ABC, если BC = 2, а разность углов B и C равна 30o.
Дан произвольный набор из +1 и -1 длиной 2k. Из него получается новый по следующему правилу: каждое число умножается на следующее за ним; последнее 2k-тое число умножается на первое. С новым набором из 1 и -1 проделывается то же самое и т.д. Доказать, что в конце концов получается набор, состоящий из одних единиц. |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 233]
Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь).
Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
Укажите явный вид коэффициентов в многочленах Fn(x) и Ln(x). Решите задачи 60581 и 60582, используя многочлены Фибоначчи.
Садовник, привив черенок редкого растения,
оставляет его расти два года, а затем ежегодно берет от него по
6 черенков. С каждым новым черенком он поступает аналогично.
Сколько будет растений и черенков на n-ом году роста
первоначального растения?
Докажите, что бесконечная сумма
Дан произвольный набор из +1 и -1 длиной 2k. Из него получается новый по следующему правилу: каждое число умножается на следующее за ним; последнее 2k-тое число умножается на первое. С новым набором из 1 и -1 проделывается то же самое и т.д. Доказать, что в конце концов получается набор, состоящий из одних единиц.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 233]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке