ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны окружность O, точка A, лежащая на ней, перпендикуляр к плоскости окружности O, восставленный из точки A, и точка B, лежащая на этом перпендикуляре. Найдите геометрическое место оснований перпендикуляров, опущенных из точки A на прямые, проходящие через точку B и произвольную точку окружности O.

   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 13]      



Задача 64925

Темы:   [ Куб ]
[ Центр масс ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.

Прислать комментарий     Решение

Задача 78566

Темы:   [ Метод ГМТ в пространстве ]
[ Круглые тела (прочее) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Даны окружность O, точка A, лежащая на ней, перпендикуляр к плоскости окружности O, восставленный из точки A, и точка B, лежащая на этом перпендикуляре. Найдите геометрическое место оснований перпендикуляров, опущенных из точки A на прямые, проходящие через точку B и произвольную точку окружности O.
Прислать комментарий     Решение


Задача 66251

Темы:   [ Тетраэдр (прочее) ]
[ Сфера, вписанная в тетраэдр ]
[ Поворот и винтовое движение ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Касательные к сферам ]
[ Вспомогательные подобные треугольники ]
[ ГМТ в пространстве (прочее) ]
[ Барицентрические координаты ]
[ Средняя линия треугольника ]
[ Неравенство треугольника (прочее) ]
Сложность: 5
Классы: 10,11

В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
  а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
  б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1A2 – точка пересечения прямой A1I с плоскостью B1C1D1B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .