ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.

Вниз   Решение


Автор: Фольклор

Какое наибольшее количество треугольных граней может иметь пятигранник?

ВверхВниз   Решение


В коллекции Алика есть два типа предметов: значки и браслеты. Значков больше, чем браслетов. Алик заметил, что если он увеличит количество браслетов в некоторое (не обязательно целое) число раз, не изменив количества значков, то в его коллекции будет 100 предметов. А если, наоборот, он увеличит в это же число раз первоначальное количество значков, оставив прежним количество браслетов, то у него будет 101 предмет. Сколько значков и сколько браслетов могло быть в коллекции Алика?

ВверхВниз   Решение


Докажите, что существует бесконечно много нечётных n, для которых число  2n + n  – составное.

ВверхВниз   Решение


Имеется угольник с углом в 40°. Как с его помощью построить угол, равный:
 а) 80°;   б) 160°;   в) 20°?

ВверхВниз   Решение


Дан треугольник ABC. Найдите множество центров прямоугольников PQRS, вершины Q и P которых лежат на стороне AC, вершины R и S — на сторонах AB и BC соответственно.

ВверхВниз   Решение


В шахматном турнире участвовало 12 человек. После окончания турнира каждый участник составил 12 списков. В первый список входит только он сам, во второй -- он и те, у кого он выиграл, в третий — все люди из второго списка и те, у кого они выиграли, и т.д. В 12 список входят все люди из одиннадцатого списка и те, у кого они выиграли. Известно, что для любого участника турнира в его двенадцатый список попал человек, которого не было в его одиннадцатом списке. Сколько ничейных партий было сыграно в турнире?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 103779

Темы:   [ Обратный ход ]
[ Задачи на проценты и отношения ]
Сложность: 3-
Классы: 6,7

Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе. Сколько человек в семье?

Прислать комментарий     Решение


Задача 103807

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 7

Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?

Прислать комментарий     Решение


Задача 31355

Темы:   [ Обратный ход ]
[ Связность и разложение на связные компоненты ]
[ Ориентированные графы ]
Сложность: 3
Классы: 5,6,7,8

В 15-этажном доме имеется лифт с двумя кнопками: "+7" и "–9" (см. задачу 31354). Можно ли проехать с 3-го этажа на 12-й?

Прислать комментарий     Решение

Задача 78654

Тема:   [ Обратный ход ]
Сложность: 3
Классы: 9,10

В шахматном турнире участвовало 12 человек. После окончания турнира каждый участник составил 12 списков. В первый список входит только он сам, во второй -- он и те, у кого он выиграл, в третий — все люди из второго списка и те, у кого они выиграли, и т.д. В 12 список входят все люди из одиннадцатого списка и те, у кого они выиграли. Известно, что для любого участника турнира в его двенадцатый список попал человек, которого не было в его одиннадцатом списке. Сколько ничейных партий было сыграно в турнире?
Прислать комментарий     Решение


Задача 111638

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 6,7,8,9

Мальвина дала Буратино задание: "Сосчитай кляксы в своей тетрадке, прибавь к их числу 7, раздели на 8, умножь на 6 и отними 9. Если сделаешь всё правильно, получишь простое число". Буратино всё перепутал. Кляксы он подсчитал точно, но потом умножил их количество на 7, вычел из результата 8, затем разделил на 6 и прибавил 9. Какой ответ получился у Буратино?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .