ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри выпуклого многоугольника M помещена окружность максимально возможного радиуса R (это значит, что внутри M нельзя поместить окружность большего радиуса). Известно, что внутри можно провернуть отрезок длины 1 на любой угол (т.е. мы можем двигать единичный отрезок как твердый стержень по плоскости так, чтобы он не вылезал за пределы многоугольника M и при этом повернулся на любой заданный угол). Докажите, что R1/3. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 172]
О выпуклом четырёхугольнике ABCD известно, что окружность с диаметром AB касается прямой CD. Докажите, что окружность с диаметром CD касается прямой AB тогда и только тогда, когда прямые BC и AD параллельны.
Докажите, что если две биссектрисы треугольника равны, то он равнобедренный.
Докажите, что точка пересечения диагоналей описанного вокруг окружности четырёхугольника совпадает с точкой пересечения диагоналей четырёхугольника, вершинами которого служат точки касания сторон первого четырёхугольника с окружностью.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 172] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|