ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 488]      



Задача 78568

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 4
Классы: 8,9,10

Дана последовательность ..., a-n,..., a-1, a0, a1,..., an,... бесконечная в обе стороны, причём каждый её член равен $ {\frac{1}{4}}$ суммы двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть бесконечное число пар равных между собой чисел. (Пояснение: два члена, про которые известно, что они равны, не обязательно соседние).
Прислать комментарий     Решение


Задача 79307

Темы:   [ Связность и разложение на связные компоненты ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10

В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.

Прислать комментарий     Решение

Задача 79356

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Наименьший или наибольший угол ]
[ Бесконечные пределы и пределы на бесконечности ]
Сложность: 4
Классы: 10,11

На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка A, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых.
Прислать комментарий     Решение


Задача 98006

Темы:   [ Таблицы и турниры (прочее) ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4
Классы: 7,8,9

а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить  3n + 1  звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.

Прислать комментарий     Решение

Задача 98456

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9

100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие.
Докажите, что можно убрать по две гирьки с каждой чаши так, что равновесие не нарушится.

Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .