ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Есть набор монет радиусами $1, 2, 3,\ldots, 10$ см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?

Вниз   Решение


На плоскости отмечена точка O. Можно ли так расположить на плоскости   а) 7 кругов;  б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?

Вверх   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1027]      



Задача 78662

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 10,11

Можно ли выбрать 100 000 номеров телефонов из 6 цифр каждый так, чтобы при одновременном вычеркивании из всех этих номеров k-той цифры (k = 1, 2,...6) получились все пятизначные номера от 00000 до 99999?
Прислать комментарий     Решение


Задача 78674

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 3+
Классы: 9,10

Разобьём все натуральные числа на группы так, чтобы в первой группе было одно число, во второй — два, в третьей — три и т.д. Можно ли это сделать таким образом, чтобы из суммы чисел в каждой группе нацело извлекался корень седьмой степени?
Прислать комментарий     Решение


Задача 79346

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Кривые второго порядка ]
Сложность: 3+
Классы: 11

Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов?
Прислать комментарий     Решение


Задача 79361

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Окружность, вписанная в угол ]
[ Принцип Дирихле (углы и длины) ]
[ Правильные многоугольники ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

На плоскости отмечена точка O. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?

Прислать комментарий     Решение

Задача 79365

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Окружность, вписанная в угол ]
[ Принцип Дирихле (углы и длины) ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 8,9

На плоскости отмечена точка O. Можно ли так расположить на плоскости   а) 7 кругов;  б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?

Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .