Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Какое наибольшее значение может принимать выражение     где a, b, c – попарно различные ненулевые цифры?

Вниз   Решение


Охотник рассказал приятелю, что видел в лесу волка с метровым хвостом. Тот рассказал другому приятелю, что в лесу видели волка с двухметровым хвостом. Передавая новость дальше, простые люди увеличивали длину хвоста вдвое, а творческие – втрое. В результате по телевизору сообщили о волке с хвостом длиной 864 метра. Сколько простых и сколько творческих людей "отрастили" волку хвост?

ВверхВниз   Решение


Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?

ВверхВниз   Решение


Сравнив дроби  111110/111111222221/222223333331/333334,  расположите их в порядке возрастания.

ВверхВниз   Решение


На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.

ВверхВниз   Решение


Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например,  49/98 = 4/8.  Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".

ВверхВниз   Решение


Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.

ВверхВниз   Решение


Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

ВверхВниз   Решение


Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?

ВверхВниз   Решение


Bыпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник вписанный?

ВверхВниз   Решение


Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь). Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
  а)  Ln(x) = Fn–1(x) + Fn+1(x)  (n ≥ 1);
  б)  Fn(x)(x² + 4) = Ln–1(x) + Ln+1(x)  (n ≥ 1);
  в)  F2n(x) = Ln(x)Fn(x)  (n ≥ 0);
  г)  (Ln(x))² + (Ln+1(x))² = (x² + 4)F2n+1(x)  (n ≥ 0);
  д)  Fn+2(x) + Fn–2(x) = (x² + 2)Fn(x).

ВверхВниз   Решение


Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство  P(x) > x.  Определим последовательность {bn} следующим образом:  b1 = 1,  bk+1 = P(bk)  для  k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что  P(x) = x + 1.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC взяты точки D и E соответственно, причём  AD/DB = BE/EC = 2  и  ∠C = 2∠DEB.
Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что  AQ = AC,  BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.

ВверхВниз   Решение


Докажите, что если     при  n = 2, ..., 10,  то  

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 233]      



Задача 78506

Тема:   [ Рекуррентные соотношения ]
Сложность: 4
Классы: 9,10

Последовательность чисел a1, a2,..., an... образуется следующим образом:

a1 = a2 = 1; an = $\displaystyle {\frac{a_{n-1}^2+2}{a_{n-2}}}$        (n$\displaystyle \ge$3).

Доказать, что все числа в последовательности — целые.
Прислать комментарий     Решение

Задача 79302

Темы:   [ Рекуррентные соотношения ]
[ Обратный ход ]
Сложность: 4
Классы: 8,9

В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: а) набор цифр 1234; 3269; б) вторично набор 1975?
Прислать комментарий     Решение


Задача 79304

Темы:   [ Рекуррентные соотношения ]
[ Обратный ход ]
[ Деление с остатком ]
Сложность: 4
Классы: 7,8,9

В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:
  а) набор цифр 1234; 3269;   б) вторично набор 1975;   в) набор 8197?

Прислать комментарий     Решение

Задача 79345

Темы:   [ Рекуррентные соотношения ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4
Классы: 10,11

Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство  P(x) > x.  Определим последовательность {bn} следующим образом:  b1 = 1,  bk+1 = P(bk)  для  k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что  P(x) = x + 1.

Прислать комментарий     Решение

Задача 79492

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Неравенство Коши ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 9,10,11

Докажите, что если     при  n = 2, ..., 10,  то  

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .