ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из точки M по плоскости с постоянной скоростью ползёт муравей. Его путь представляет собой спираль, которая наматывается на точку O и гомотетична некоторой своей части относительно этой точки. Сможет ли муравей пройти весь свой путь за конечное время?

   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 694]      



Задача 116861

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
Сложность: 3
Классы: 5,6

На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19  (6·1 + 13 = 19).  Какое число можно будет прочитать на доске через час?

Прислать комментарий     Решение

Задача 116925

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

На доске записаны в ряд сто чисел, отличных от нуля. Известно, что каждое число, кроме первого и последнего, является произведением двух соседних с ним чисел. Первое число – это 7. Какое число последнее?

Прислать комментарий     Решение

Задача 66624

Темы:   [ Задачи на проценты и отношения ]
[ Последовательности ]
Сложность: 3
Классы: 9,10,11

Акции фирмы “Рога и копыта” каждый день меняют свою стоимость: поочерёдно то дорожают в $a$ раз, то дешевеют на $b$ рублей. Их стоимость уже трижды была равна $N$ рублей. Докажите, что рано или поздно она примет это значение и в четвёртый раз.
Прислать комментарий     Решение


Задача 79496

Темы:   [ Гомотетия и поворотная гомотетия (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 10,11

Из точки M по плоскости с постоянной скоростью ползёт муравей. Его путь представляет собой спираль, которая наматывается на точку O и гомотетична некоторой своей части относительно этой точки. Сможет ли муравей пройти весь свой путь за конечное время?
Прислать комментарий     Решение


Задача 30390

Темы:   [ Деление с остатком ]
[ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что  22225555 + 55552222  делится на 7.

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .