ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



Задача 86101

Темы:   [ Наглядная геометрия ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 7,8

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Прислать комментарий     Решение

Задача 103951

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 5,6,7

Можно ли разрезать прямоугольник размерами 78×55 см на прямоугольники 5×11 см?
Прислать комментарий     Решение


Задача 107713

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Разные задачи на разрезания ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3
Классы: 8,9

Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
   
Рис. 1

Прислать комментарий     Решение


Задача 64691

Темы:   [ Правильный (равносторонний) треугольник ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?

Прислать комментарий     Решение

Задача 65012

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Выпуклый n-угольник разрезан на три выпуклых многоугольника. У одного из них n сторон, у другого – больше чем n, у третьего – меньше чем n.
Каковы возможные значения n?

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .