ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вершины пирамиды KLMN расположены в точках пересечения медиан граней некоторой правильной треугольной пирамиды со стороной основания a и боковым ребром b . Найдите полную поверхность пирамиды KLMN .

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 181]      



Задача 56492

Темы:   [ Медиана делит площадь пополам ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей подобных треугольников ]
Сложность: 3
Классы: 8,9

Докажите, что площадь треугольника, стороны которого равны медианам треугольника площади S, равна 3S/4.
Прислать комментарий     Решение


Задача 57681

Темы:   [ Векторы сторон многоугольников ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10

а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.
Прислать комментарий     Решение


Задача 86917

Темы:   [ Линейные зависимости векторов ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Вершины пирамиды KLMN расположены в точках пересечения медиан граней некоторой правильной треугольной пирамиды со стороной основания a и боковым ребром b . Найдите полную поверхность пирамиды KLMN .
Прислать комментарий     Решение


Задача 86948

Темы:   [ Свойства сечений ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Через вершину C тетраэдра ABCD и середины рёбер AD и BD проведена плоскость. В каком отношении эта плоскость делит отрезок MN , где M и N – середины рёбер AB и CD соответственно?
Прислать комментарий     Решение


Задача 86953

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Тетраэдр (прочее) ]
Сложность: 3
Классы: 10,11

В тетраэдре ABCD проведены медианы AM и DN граней ACD и ADB . На этих медианах взяты соответственно точки E и F , причём EF || BC . Найдите отношение EF:BC .
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .