ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вычислить с пятью десятичными знаками (то есть с точностью до
0,00001) произведение: Пусть R и r — радиусы описанной и вписанной
окружностей треугольника. Докажите, что R Решите уравнение: x(x + 1) = 2014·2015. Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24. Даны два набора векторов
a1,...,an и
b1,...,bm, причем сумма длин проекций векторов
первого набора на любую прямую не больше суммы длин проекций векторов
второго набора на ту же прямую. Докажите, что сумма
длин векторов первого набора не больше суммы длин
векторов второго набора.
Пусть M — центр масс n-угольника
A1...An;
M1,..., Mn — центры масс (n - 1)-угольников,
полученных из этого n-угольника выбрасыванием вершин
A1,...,
An соответственно. Докажите, что многоугольники
A1...An
и
M1...Mn гомотетичны.
Биссектриса угла A треугольника ABC продолжена до пересечения в D с описанной вокруг него окружностью. Докажите, что AD > 1/2 (AB + AC). Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство AB·CD + AC·BD > AD·BC. Докажите, что
rrc Известно, что если поверхность некоторого тетраэдра ABCD разрезать вдоль рёбер AD , BD и CD , то его развёрткой на плоскость ABC будет квадрат со стороной a . Найдите объём тетраэдра. |
Страница: 1 2 3 4 5 >> [Всего задач: 22]
Из квадрата размером 3 на 3 вырезать одну фигуру, которая представляет развёртку полной поверхности куба, длина ребра которого равна 1.
Известно, что если поверхность некоторого тетраэдра ABCD разрезать вдоль рёбер AD , BD и CD , то его развёрткой на плоскость ABC будет квадрат со стороной a . Найдите объём тетраэдра.
Имеются две концентрические окружности. Вокруг меньшей из них описан многоугольник, целиком находящийся внутри большей окружности. Из общего центра на стороны многоугольника опущены перпендикуляры, которые продолжены до пересечения с большей окружностью; каждая из полученных точек пересечения соединена с концами соответствующей стороны многоугольника. При каком условии построенный так звёздчатый многоугольник будет развёрткой пирамиды?
Может ли квадрат являться развёрткой некоторой треугольной пирамиды?
Плоский угол при вершине правильной треугольной пирамиды ABCD с основанием ABC равен α . Правильная усечённая пирамида ABCA1B1C1 разрезана по пяти рёбрам: A1B1 , B1C1 , C1C , CA и AB . После чего эту пирамиду развернули на плоскость. При каких значениях α получившаяся развёртка будет обязательно накрывать сама себя?
Страница: 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке