ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?

Вниз   Решение


Биссектрисы тупых углов при основании трапеции пересекаются на другом её основании.
Найдите стороны трапеции, если её высота равна 12, а длины биссектрис равны 15 и 13.

ВверхВниз   Решение


Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30°, с одним из оснований.
Найдите это основание, если на нём лежит точка пересечения биссектрис углов при другом основании.

ВверхВниз   Решение


В треугольной пирамиде ABCD известно, что CD = a , а перпендикуляр, опущенный из середины ребра AB на CD , равен b и образует равные углы α с гранями ACD и BCD . Найдите объём пирамиды.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



Задача 87061

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Двугранный угол ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде ABCD известно, что CD = a , а перпендикуляр, опущенный из середины ребра AB на CD , равен b и образует равные углы α с гранями ACD и BCD . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87062

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают.
Прислать комментарий     Решение


Задача 87065

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
Сложность: 4
Классы: 8,9

Докажите, что все грани тетраэдра равны (т.е. тетраэдр – равногранный) тогда и только тогда, когда точка пересечения медиан и центр описанной сферы совпадают.
Прислать комментарий     Решение


Задача 87066

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Ортоцентрический тетраэдр ]
Сложность: 4
Классы: 8,9

Дана треугольная пирамида ABCD . Скрещивающиеся рёбра AC и BD этой пирамиды перпендикулярны. Также перпендикулярны скрещивающиеся ребра AD и BC , а AB = CD . Все рёбра этой пирамиды касаются шара радиуса r . Найдите площадь грани ABC .
Прислать комментарий     Решение


Задача 109256

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Точки E и F являются серединами отрезков AB и CD соответственно, а прямая EF перпендикулярна прямым AB и CD . Найдите угол между скрещивающимися прямыми AB и CD , если известно, что угол ACB равен arccos , AB = 4 , CD = 6 и EF = .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .