ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Высота трапеции ABCD равна 7, основания AD и BC равны соответственно 8 и 6. Через точку E, лежащую на стороне CD, проведена прямая BE, которая делит диагональ AC в точке O в отношении AO : OC = 3 : 2. Найдите площадь треугольника OEC. Докажите, что для чисел Люка Ln (см. задачу 60585) выполнено соотношение Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной. Дан треугольник ABC. Найдите внутри его точку O, для которой сумма
длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот
случай, когда один из углов треугольника больше
120o.)
Круг разделен на 6 секторов и в них по часовой стрелке расставлены числа: 1, 0, 1, 0, 0, 0. Разрешается прибавить по единице к числам в любых двух соседних секторах. Можно ли такими операциями добиться того, чтобы все числа в секторах были одинаковыми?
В основании треугольной пирамиды NKLM лежит правильный треугольник KLM . Высота пирамиды, опущенная из вершины N , проходит через середину ребра LM . Известно, что KL = a , KN = b . Пирамиду пересекает плоскость β , параллельная рёбрам KN и LM . На каком расстоянии от вершины N должна находиться плоскость β , чтобы площадь сечения пирамиды этой плоскостью была наибольшей? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 65]
Периметр равнобедренного треугольника равен P . Каковы должны быть его стороны, чтобы объём фигуры, полученной вращением этого треугольника вокруг основания, был наибольшим?
Рассматриваются всевозможные прямоугольные параллелепипеды, у которых одна из боковых граней является квадратом, а периметр нижнего основания равен 12. Найдите среди них параллелепипед с наибольшим объёмом и вычислите этот объём.
Рассматриваются всевозможные прямоугольные параллелепипеды,
объём каждого из которых равен
В основании треугольной пирамиды NKLM лежит правильный треугольник KLM . Высота пирамиды, опущенная из вершины N , проходит через середину ребра LM . Известно, что KL = a , KN = b . Пирамиду пересекает плоскость β , параллельная рёбрам KN и LM . На каком расстоянии от вершины N должна находиться плоскость β , чтобы площадь сечения пирамиды этой плоскостью была наибольшей?
В основании треугольной пирамиды PQRS лежит правильный треугольник QRS . Высота пирамиды, опущенная из вершины P , проходит через середину ребра RS . Известно, что PQ = m , QR = n . Пирамиду пересекает плоскость α , параллельная рёбрам PQ и RS . На каком расстоянии от вершины Q должна находиться плоскость α , чтобы площадь сечения пирамиды этой плоскостью была наибольшей?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 65]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке