ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В четырёхугольной пирамиде SABCD основание ABCD имеет своей осью симметрии диагональ AC , которая равна 9, а точка E пересечения диагоналей четырёхугольника ABCD делит отрезок AC так, что отрезок AE меньше отрезка EC . Через середину бокового ребра пирамиды SABCD проведена плоскость, параллельная основанию и пересекающаяся с рёбрами SA , SB , SC , SD соответственно в точках A1 , B1 , C1 , D1 . Получившийся многогранник ABCDA1B1C1D1 , являющийся частью пирамиды SABCD , пересекается с плоскостью α по правильному шестиугольнику, со стороной 2. Найдите площадь треугольника ABD , если плоскость α пересекает отрезки BB1 и DD1 .

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 337]      



Задача 87067

Темы:   [ Развертка помогает решить задачу ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 8,9

Ребро правильного тетраэдра равно a . Через вершину тетраэдра проведено сечение, являющееся треугольником. Докажите, что периметр P сечения удовлетворяет неравенствам 2a < P 3a .
Прислать комментарий     Решение


Задача 87068

Темы:   [ Развертка помогает решить задачу ]
[ Равногранный тетраэдр ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде ABCD суммы трёх плоских углов при каждой из вершин B и C равны 180o и AD = BC . Найдите объём пирамиды. если площадь грани BCD равна 100, а расстояние от центра описанного шара до плоскости основания ABC равно 3.
Прислать комментарий     Решение


Задача 87071

Темы:   [ Развертка помогает решить задачу ]
[ Кратчайший путь по поверхности ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Сторона основания правильной треугольной призмы равна a , боковое ребро равно b . Найдите кратчайшее расстояние по поверхности призмы между вершиной одного основания и серединой противоположной ей стороны другого основания.
Прислать комментарий     Решение


Задача 87387

Темы:   [ Свойства сечений ]
[ Усеченная пирамида ]
Сложность: 4
Классы: 10,11

В четырёхугольной пирамиде SABCD основание ABCD имеет своей осью симметрии диагональ AC , которая равна 9, а точка E пересечения диагоналей четырёхугольника ABCD делит отрезок AC так, что отрезок AE меньше отрезка EC . Через середину бокового ребра пирамиды SABCD проведена плоскость, параллельная основанию и пересекающаяся с рёбрами SA , SB , SC , SD соответственно в точках A1 , B1 , C1 , D1 . Получившийся многогранник ABCDA1B1C1D1 , являющийся частью пирамиды SABCD , пересекается с плоскостью α по правильному шестиугольнику, со стороной 2. Найдите площадь треугольника ABD , если плоскость α пересекает отрезки BB1 и DD1 .
Прислать комментарий     Решение


Задача 87388

Темы:   [ Свойства сечений ]
[ Усеченная пирамида ]
Сложность: 4
Классы: 10,11

В основании призмы лежит четырёхугольник ABCD , диагональ AC которого является осью симметрии, AA1 , BB1 , CC1 , DD1 – боковые рёбра призмы. Отрезки AC , BD и AA1 соответственно равны 26, 14 и 13. Некоторая плоскость пересекает рёбра BB1 и DD1 , и в сечении призмы этой плоскостью получается правильный шестиугольник. Найдите объём призмы.
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 337]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .