Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.

Вниз   Решение



В прямом параллелепипеде ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 известно, что AB = 29, AD = 36, BD = 25, AA1 = 48. Найдите площадь сечения AB1C1D.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]      



Задача 111120

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Пусть V ─ объём тетраэдра, S₁ и S₂ ─ площади двух граней, a ─ длина их общего ребра, φ ─ величина двугранного угла между
ними. Докажите, что V = 
2
3
 · 
SS₂ sin φ
a
.
Прислать комментарий     Решение


Задача 116998

Темы:   [ Цилиндр ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Точка А лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), В – наиболее удалённая от неё точка на окружности нижнего основания, С – произвольная точка окружности нижнего основания. Найдите АВ, если  АС = 12,  BC = 5.

Прислать комментарий     Решение

Задача 87459

Темы:   [ Площадь сечения ]
[ Теорема о трех перпендикулярах ]
Сложность: 3+
Классы: 10,11


В прямом параллелепипеде ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 известно, что AB = 29, AD = 36, BD = 25, AA1 = 48. Найдите площадь сечения AB1C1D.

Прислать комментарий     Решение


Задача 65025

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Теорема о трех перпендикулярах ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 4-
Классы: 10,11

Дана прямая l в пространстве и точка A, не лежащая на ней. Для каждой прямой l', проходящей через A, построим общий перпендикуляр XY (Y лежит на l') к прямым l и l'. Найдите ГМТ точек Y.

Прислать комментарий     Решение

Задача 65989

Темы:   [ Тетраэдр (прочее) ]
[ Теорема о трех перпендикулярах ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки перпендикулярности ]
Сложность: 4-
Классы: 10,11

Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .