ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Метод Ньютона. Для приближенного нахождения корней уравнения f (x) = 0 Ньютон предложил искать последовательные приближения по формуле

xn + 1 = xn - $\displaystyle {\frac{f(x_n)}{f'(x_n)}}$,

(начальное условие x0 следует выбирать поближе к искомому корню).
Докажите, что для функции f (x) = x2 - k и начального условия x0 > 0 итерационный процесс всегда будет сходиться к $ \sqrt{k}$, то есть $ \lim\limits_{n\to\infty}^{}$xn = $ \sqrt{k}$.
Как будет выражаться xn + 1 через xn? Сравните результат с формулой из задачи 9.48.

Вниз   Решение


Точка K лежит на ребре AB пирамиды ABCD . Постройте сечение пирамиды плоскостью, проходящей через точку K параллельно прямым BC и AD .

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 66]      



Задача 87628

Темы:   [ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Точка K лежит на ребре AB пирамиды ABCD . Постройте сечение пирамиды плоскостью, проходящей через точку K параллельно прямым BC и AD .
Прислать комментарий     Решение


Задача 109048

Темы:   [ Параллельность прямых и плоскостей ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Прямые a и b параллельны. Плоскость, проходящая через прямую a , и плоскость, проходящая через прямую b , пересекаются по прямой c . Докажите, что прямая c параллельна каждой из прямых a и b .
Прислать комментарий     Решение


Задача 109076

Темы:   [ Углы между прямыми и плоскостями ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Рассмотрим прямоугольник ABCD и точку E , не лежащую в его плоскости. Пусть плоскости ABE и CDE пересекаются по прямой l , а плоскости BCE и ADE – по прямой p . Найдите угол между прямыми l и p .
Прислать комментарий     Решение


Задача 109077

Темы:   [ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. Через точку пересечения медиан треугольника ABC проведена плоскость, параллельная прямым AB и CD . В каком отношении эта плоскость делит медиану, проведённую к стороне CD треугольника ACD ?
Прислать комментарий     Решение


Задача 109078

Темы:   [ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. В каком отношении плоскость, проходящая через точки пересечения медиан треугольников ABC , ABD и BCD , делит отрезок BD ?
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .