ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеются чашечные весы, любые гири и десять мешков с монетами. Все монеты во всех мешках одинаковы по внешнему виду, но в одном из мешков все монеты фальшивые и каждая весит по 15 г, а в остальных девяти мешках все монеты настоящие и каждая весит по 20 г. Как при помощи одного взвешивания определить, в каком мешке фальшивые монеты?

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 191]      



Задача 109019

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Из таблицы

выбраны a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.

Прислать комментарий     Решение

Задача 109496

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.

Прислать комментарий     Решение

Задача 116876

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 10,11

Функция f(x) такова, что для всех значений x выполняется равенство  f(x + 1) = f(x) + 2x + 3.  Известно, что  f(0) = 1.  Найдите f(2012).

Прислать комментарий     Решение

Задача 110192

Темы:   [ Теория игр (прочее) ]
[ Геометрическая прогрессия ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?
Прислать комментарий     Решение


Задача 88014

Темы:   [ Взвешивания ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 7,8,9,10

Имеются чашечные весы, любые гири и десять мешков с монетами. Все монеты во всех мешках одинаковы по внешнему виду, но в одном из мешков все монеты фальшивые и каждая весит по 15 г, а в остальных девяти мешках все монеты настоящие и каждая весит по 20 г. Как при помощи одного взвешивания определить, в каком мешке фальшивые монеты?
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 191]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .