ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
|
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 694]
В старой усадьбе дом обсажен по кругу высокими деревьями – елями, соснами и березами. Всего деревьев 96. Эти деревья обладают странным свойством: из двух деревьев, растущих через одно от любого хвойного – одно хвойное, а другое лиственное, и из двух деревьев, растущих через три от любого хвойного – тоже одно хвойное, а другое лиственное. Сколько берёз посажено вокруг дома?
Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
Существует ли такое N и такие N – 1 бесконечных арифметических прогрессий с разностями 2, 3, 4, ..., N, что каждое натуральное число принадлежит хотя бы одной из этих прогрессий?
Докажите, что при любом натуральном n
Последовательность {xn} определяется условиями: xn+2 = xn – 1/xn+1 при n ≥ 1.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 694] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|