Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.

Вниз   Решение


Через данную точку проведите прямую, пересекающую две данные прямые под равными углами.

ВверхВниз   Решение


Можно ли из последовательности  1, ½, ⅓, ... выбрать (сохраняя порядок)
  а) сто чисел,
  б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2ak–1)?

ВверхВниз   Решение


Пусть A, B, C, D - последовательные вершины квадрата, а точка O расположена внутри квадрата. Известно, что OC = OD = $ \sqrt{10}$ и OB = $ \sqrt{26}$. Найдите площадь квадрата.

ВверхВниз   Решение


В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший.
Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.

ВверхВниз   Решение


Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника AB1C1 пересекаются в точке N.
Докажите, что точки A, M и N лежат на одной прямой.

ВверхВниз   Решение


В четырёхугольнике ABCD  AB = CD,  M и K – середины BC и AD. Докажите, что угол между MK и AC равен полусумме углов BAC и DCA.

ВверхВниз   Решение


Найдите радиус окружности, вписанной в ромб со стороной a и острым углом 60o.

ВверхВниз   Решение


В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что  BK = MN.

ВверхВниз   Решение


В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают.

ВверхВниз   Решение


Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?

Вверх   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 241]      



Задача 57681

Темы:   [ Векторы сторон многоугольников ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10

а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.
Прислать комментарий     Решение


Задача 67035

Темы:   [ Многоугольники (прочее) ]
[ Вычисление площадей ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10,11

В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника?
Прислать комментарий     Решение


Задача 86977

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . Найдите расстояние между прямыми BD1 и DC1 и постройте их общий перпендикуляр.
Прислать комментарий     Решение


Задача 97902

Темы:   [ Тетраэдр (прочее) ]
[ Векторы (прочее) ]
[ Вспомогательные проекции ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?

Прислать комментарий     Решение

Задача 116382

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема косинусов ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD стороны равны соответственно:   AB = 10,  BC = 14,  CD = 11,  AD = 5.   Найдите угол между его диагоналями.

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .