ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Ищутся такие натуральные числа, оканчивающиеся на 5, что в их десятичной записи цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают.
  а) Найдите четыре таких числа.
  б) Докажите, что таких чисел бесконечно много.

   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 598]      



Задача 97987

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?

Прислать комментарий     Решение

Задача 98034

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 10,11

Числа 21989 и 51989 выписали одно за другим (в десятичной записи). Сколько всего цифр выписано?

Прислать комментарий     Решение

Задача 98087

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Автор: Анджанс А.

Ищутся такие натуральные числа, оканчивающиеся на 5, что в их десятичной записи цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают.
  а) Найдите четыре таких числа.
  б) Докажите, что таких чисел бесконечно много.

Прислать комментарий     Решение

Задача 98095

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Автор: Анджанс А.

Ищутся такие оканчивающиеся на 5 натуральные числа, что их цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. Докажите, что таких чисел бесконечно много.

Прислать комментарий     Решение

Задача 98174

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

Автор: Перлин А.

Найти все такие числа вида 2n (n натурально), что при вычёркивании первой цифры их десятичной записи снова получится степень двойки.

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .