ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ищутся такие натуральные числа, оканчивающиеся на 5, что в их десятичной записи цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 598]
Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?
Числа 21989 и 51989 выписали одно за другим (в десятичной записи). Сколько всего цифр выписано?
Ищутся такие натуральные числа, оканчивающиеся на 5, что в их десятичной записи цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают.
Ищутся такие оканчивающиеся на 5 натуральные числа, что их цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. Докажите, что таких чисел бесконечно много.
Найти все такие числа вида 2n (n натурально), что при вычёркивании первой цифры их десятичной записи снова получится степень двойки.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 598] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|