ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Неравенство Иенсена. Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2, ..., xn ( n $ \geqslant$ 2) из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$, ..., $ \alpha_{n}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ +...+ $ \alpha_{n}^{}$ = 1, выполняется неравенство:

f ($\displaystyle \alpha_{1}^{}$x1 +...+ $\displaystyle \alpha_{n}^{}$xn) > $\displaystyle \alpha_{1}^{}$f (x1) +...+ $\displaystyle \alpha_{n}^{}$f (xn).


Вниз   Решение


Даны натуральные числа m и n. Найти такие натуральные числа m1 и n1, не имеющие общих делителей, что m1 / n1 = m / n.

ВверхВниз   Решение


На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 57558

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 9

Внутри окружности с центром O дана точка A. Найдите точку M окружности, для которой угол OMA максимален.
Прислать комментарий     Решение


Задача 57562

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 9

Если на плоскости заданы пять точек, то, рассматривая всевозможные тройки этих точек, можно образовать 30 углов. Обозначим наименьший из этих углов $ \alpha$. Найдите наибольшее значение $ \alpha$.
Прислать комментарий     Решение


Задача 108412

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 7,8,9

Город Нью-Васюки имеет форму квадрата со стороной 5 км. Улицы делят его на кварталы, являющиеся квадратами со стороной 200 м. Какую наибольшую площадь можно обойти, пройдя по улицам Нью-Васюков 10 км и вернувшись в исходную точку?
Прислать комментарий     Решение


Задача 35509

Темы:   [ Экстремальные свойства (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Четыре села находятся в вершинах квадрата со стороной 1 км. Для того, чтобы можно было проехать из каждого села в каждое, проложили две прямолинейные дороги вдоль диагоналей данного квадрата. Можно ли проложить сеть дорог между селами иным образом так, чтобы их суммарная длина уменьшилась, но по-прежнему из каждого села можно было проехать в каждое?

Прислать комментарий     Решение

Задача 98284

Темы:   [ Экстремальные свойства (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .