ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]      



Задача 64387

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4-
Классы: 8,9

В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону?

Прислать комментарий     Решение

Задача 66027

Темы:   [ Выпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 9,10,11

Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники.
Докажите, что в этом многоугольнике найдутся две равные стороны.

Прислать комментарий     Решение

Задача 98521

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9

На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали?

Прислать комментарий     Решение

Задача 115888

Темы:   [ Выпуклые многоугольники ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

На плоскости задано n точек, являющихся вершинами выпуклого n-угольника,  n > 3.  Известно, что существует ровно k равносторонних треугольников со стороной 1, вершины которых – заданные точки.
  а) Докажите, что  k < 2n/3.
  б) Приведите пример конфигурации, для которой  k > 0,666n.

Прислать комментарий     Решение

Задача 57100

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 9

Какое наибольшее число острых углов может иметь выпуклый многоугольник?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .