ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 601]      



Задача 64512

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

Прислать комментарий     Решение

Задача 64673

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 10,11

Произведение четырёх последовательных положительных нечётных чисел оканчивается на 9. Найдите две предпоследние цифры этого произведения.

Прислать комментарий     Решение

Задача 64961

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

Какое наименьшее количество множителей требуется вычеркнуть из числа 99! так, чтобы произведение оставшихся множителей оканчивалось на 2?

Прислать комментарий     Решение

Задача 65267

Темы:   [ Дискретное распределение ]
[ Системы счисления (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Имеются два симметричных кубика. Можно ли так написать на их гранях некоторые числа, чтобы сумма очков при бросании принимала значения 1, 2, ..., 36 с равными вероятностями?

Прислать комментарий     Решение

Задача 78029

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

2n = 10a + b.  Доказать, что если  n > 3,  то ab делится на 6.  (n, a и b – целые числа,  b < 10.)

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .