Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.

Вниз   Решение


Какое наибольшее конечное число корней может иметь уравнение

|x-a1|+..+|x-a50|=|x-b1|+..+|x-b50|,

где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?

ВверхВниз   Решение


BK – биссектриса треугольника ABC. Известно, что  ∠AKB : ∠CKB = 4 : 5.  Найдите разность углов A и C треугольника ABC.

ВверхВниз   Решение


Через вершины B , C и D трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой AB , а её центр лежит на диагонали BD . Найдите периметр трапеции ABCD , если BC=9 , AD=25 .

ВверхВниз   Решение


Команды провели турнир по футболу в один круг (каждая с каждой сыграла один раз, победа – 3 очка, ничья – 1, поражение – 0). Оказалось, что единоличный победитель набрал менее 50% от количества очков, возможного для одного участника. Какое наименьшее количество команд могло участвовать в турнире?

ВверхВниз   Решение


Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M. При этом  BM = AB,  ∠BAM = 35°,  ∠CAM = 15°.
Найдите углы треугольника ABC.

ВверхВниз   Решение


Пусть числа a и b определены равенством  a/b = [a0; a1, a2, ..., an].  Докажите, что уравнение  ax – by = 1  c неизвестными x и y имеет решением одну из пар  (Qn–1, Pn–1)  или  (– Qn–1, – Pn–1),  где  Pn–1/Qn–1  – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением?

ВверхВниз   Решение


Найдите сторону квадрата, вписанного в окружность радиуса 8.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. На продолжениях BB1 и CC1 его высот за точки B1 и C1 выбраны соответственно точки P и Q так, что угол PAQ – прямой. Пусть AF – высота треугольника APQ. Докажите, что угол BFC – прямой.

ВверхВниз   Решение


В ромб, одна из диагоналей которого равна 20 см, вписан круг радиуса 6 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 36 см2 ? (Ответ обосновать.)

ВверхВниз   Решение


Точки M и N лежат на стороне AC треугольника ABC, причём  ∠ABM = ∠C  и  ∠CBN = ∠A.  Докажите, что треугольник BMN равнобедренный.

ВверхВниз   Решение


Докажите, что хорды, удалённые от центра окружности на равные расстояния, равны.

ВверхВниз   Решение


Прямая, проходящая через точку M, удалённую от центра окружности радиуса 10 на расстояние, равное 26, касается окружности в точке A. Найдите AM.

ВверхВниз   Решение


В треугольнике PQR сторона PQ не больше чем 9, сторона PR не больше чем 12. Площадь треугольника не меньше чем 54.
Найдите его медиану, проведённую из вершины P.

ВверхВниз   Решение


В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?

ВверхВниз   Решение


Автор: Фольклор

Существуют ли такие значения a и b, при которых уравнение   х4 – 4х3 + 6х² + aх + b = 0  имеет четыре различных действительных корня?

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие нечётные натуральные  n > 1,  что для любых взаимно простых делителей a и b числа n число  a + b – 1  также является делителем n.

ВверхВниз   Решение


Разложите в цепные дроби числа:
  а) ;   б) ;   ½ + .

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 171]      



Задача 30692

Темы:   [ Сочетания и размещения ]
[ Раскладки и разбиения ]
Сложность: 3-
Классы: 7,8

Сколькими способами можно разбить 10 человек на две баскетбольные команды по 5 человек в каждой?

Прислать комментарий     Решение

Задача 30704

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?

Прислать комментарий     Решение

Задача 30723

Тема:   [ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

30 человек голосуют по пяти предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение?

Прислать комментарий     Решение

Задача 30731

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 3-
Классы: 8,9

Сколькими способами можно выложить в ряд пять красных, пять синих и пять зелёных шаров так, чтобы никакие два синих шара не лежали рядом?

Прислать комментарий     Решение

Задача 30747

Темы:   [ Сочетания и размещения ]
[ Перебор случаев ]
[ Правило произведения ]
Сложность: 3-
Классы: 7,8

На каждом борту лодки должно сидеть по четыре человека. Сколькими способами можно выбрать команду для этой лодки, если есть 31 кандидат, причём десять человек хотят сидеть на левом борту лодки, двенадцать – на правом, а девяти безразлично где сидеть?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .