Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 965]
|
|
Сложность: 3 Классы: 7,8,9
|
Для чисел а, b и с, отличных от нуля, выполняется равенство: a²(b + c – a) = b²(c + a – b) = c²(a + b – c). Следует ли из этого, что а = b = c?
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что модули корней каждого из двух квадратных трёхчленов x² + ax + b и x² + cx + d меньше 10. Может ли трёхчлен иметь корни, модули которых не меньше 10?
|
|
Сложность: 3 Классы: 8,9,10
|
На координатной плоскости задан график функции y = kx + b (см. рисунок). В той же координатной плоскости схематически постройте график функции y = kx² + bx.
|
|
Сложность: 3 Классы: 8,9,10
|
P(x) и Q(x) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена P(x) в трёхчлен Q(x), равна сумме двух чисел, получаемых при подстановке корней трёхчлена Q(x) в трёхчлен P(x). Докажите, что дискриминанты трёхчленов P(x) и Q(x) равны.
|
|
Сложность: 3+ Классы: 6,7,8
|
Разложить на множители выражение $x^3 + y^3 + z^3 - 3 x y z$.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 965]