ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 965]
Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают?
Даны три различных ненулевых числа. Петя и Вася составляют квадратные уравнения, подставляя эти числа в качестве коэффициентов, но каждый раз в новом порядке. Если у уравнения есть хотя бы один корень, то Петя получает фантик, а если ни одного, то фантик достаётся Васе. Первые три фантика достались Пете, а следующие два — Васе. Можно ли определить, кому достанется последний, шестой фантик?
Каждое неотрицательное целое число представимо, причём единственным образом, в виде
Определить коэффициенты, которые будут стоять при x17 и x18 после раскрытия скобок и приведения подобных членов в выражении (1 + x5 + x7)20.
Доказать, что если
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 965]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке