ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи 6n-значное число делится на 7. Последнюю цифру перенесли в начало. Доказать, что полученное число также делится на 7. Докажите, что все выпуклые четырёхугольники, имеющие общие середины сторон, равновелики.
В треугольнике ABC известно, что AB=c ,
BC=a , AC=b ; O — центр окружности,
касающейся стороны AB и продолжений сторон
AC и BC , D — точка пересечения луча
CO со стороной AB . Найдите отношение
Радиус сферы, касающейся всех рёбер правильного тетраэдра, равен 1. Найдите ребро тетраэдра. Найдите наибольшее значение функции y = ln (x+6)9-9x на отрезке [-5,5;0] . 100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом? |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 201]
Найдите все такие простые числа p, q, r и s, что их сумма – простое число. а числа p² + qs и p² + qr – квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.)
Найдите все такие простые числа p, что число p² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что px = y³ + 1.
При каких натуральных n найдутся такие целые a, b, c, что их сумма равна нулю, а число an + bn + cn – простое?
Существуют ли такие простые числа p1, p2, ..., p2007, что
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 201]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке