ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 1006]      



Задача 60670

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 8,9,10,11

а) Докажите, что если p — простое число и  2 ≤ k ≤ p – 2,  то    делится на p.

б) Верно ли обратное утверждение?

Прислать комментарий     Решение

Задача 60874

 [Число e и комбинаторика]
Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Число e ]
[ Раскраски ]
Сложность: 4
Классы: 9,10,11

Дано N точек, никакие три из которых не лежат на одной прямой. Каждые две из этих точек соединены отрезком, и каждый отрезок окрашен в один из k цветов. Докажите, что если  N > [k!e],  то среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.


Прислать комментарий     Решение

Задача 61502

Темы:   [ Производящие функции ]
[ Числа Фибоначчи ]
[ Рациональные функции ]
Сложность: 4
Классы: 9,10,11

а) Докажите, что производящая функция последовательности чисел Фибоначчи   F(x) = F0 + F1x + F2x² + ... + Fnxn + ...

может быть записана в виде     где   = = .

б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578.

Прислать комментарий     Решение

Задача 64722

Темы:   [ Обход графов ]
[ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Пахарев А.

Дано несколько белых и несколько чёрных точек. Из каждой белой точки идет стрелка в каждую чёрную, на каждой стрелке написано натуральное число. Известно, что если пройти по любому замкнутому маршруту, то произведение чисел на стрелках, идущих по направлению движения, равно произведению чисел на стрелках, идущих против направления движения. Обязательно ли можно поставить в каждой точке натуральное число так, чтобы число на каждой стрелке равнялось произведению чисел на её концах?

Прислать комментарий     Решение

Задача 65244

Темы:   [ Ориентированные графы ]
[ Отношение порядка ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

На соревнованиях по фигурному велосипедированию было 100 судей. Каждый судья упорядочил всех участников (от лучшего по его мнению – к худшему). Оказалось, что ни для каких трёх участников A, B, C не нашлось трёх судей, один из которых считает, что A – лучший из трёх, а B – худший, другой – что B лучший, а C худший, а третий – что C лучший, а A худший. Докажите, что можно составить общий рейтинг участников так, чтобы для каждых двух участников A и B тот, кто выше в рейтинге, был бы лучше другого по мнению хотя бы половины судей.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .