ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 366]      



Задача 30424

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера?

Прислать комментарий     Решение

Задача 30425

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Докажите, что число людей, когда-либо живших на Земле и сделавших нечётное число рукопожатий, чётно.

Прислать комментарий     Решение

Задача 30426

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?

Прислать комментарий     Решение

Задача 30784

Тема:   [ Деревья ]
Сложность: 2+
Классы: 7,8

Докажите, что граф, в котором каждые две вершины соединены ровно одним простым путем, является деревом.

Прислать комментарий     Решение

Задача 30785

Тема:   [ Деревья ]
Сложность: 2+
Классы: 7,8

Докажите, что в дереве каждые две вершины соединены ровно одним простым путем.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .