ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дано 100 положительных чисел, сумма которых равна S. Известно, что каждое из чисел меньше, чем S/99. Докажите, что сумма любых двух из этих чисел больше, чем S/99.

Вниз   Решение


Пусть стороны самопересекающихся четырехугольников KLMN и K'L'M'N', вписанных в одну и ту же окружность, пересекают хорду AB этой окружности в точках P, Q, R, S и P', Q', R', S' соответственно (сторона KL — в точке P, LM — в точке Q, и т. д.). Докажите, что если три из точек P, Q, R, S совпадают с соответственными тремя из точек P', Q', R', S', то и оставшиеся две точки тоже совпадают. (Предполагается, что хорда AB не проходит через вершины четырехугольников.)

ВверхВниз   Решение


Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 389]      



Задача 30427

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими.
Докажите, что из каждого города можно добраться до любого другого (возможно, проезжая через другие города).

Прислать комментарий     Решение

Задача 30431

Тема:   [ Обход графов ]
Сложность: 2
Классы: 6,7

Имеется группа островов, соединённых мостами так, что от каждого острова можно добраться до любого другого. Турист обошёл все острова, пройдя по каждому мосту ровно один раз. На острове Троекратном он побывал трижды. Сколько мостов ведёт с Троекратного, если турист
  а) не с него начал и не на нём закончил?
  б) с него начал, но не на нём закончил?
  в) с него начал и на нём закончил?

Прислать комментарий     Решение

Задача 30780

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.

Прислать комментарий     Решение

Задача 30819

Тема:   [ Ориентированные графы ]
Сложность: 2
Классы: 6,7,8

Дима, приехав из Врунляндии, рассказал, что там есть несколько озер, соединённых между собой реками. Из каждого озера вытекают три реки, и в каждое озеро впадают четыре реки. Докажите, что он ошибается.

Прислать комментарий     Решение

Задача 31083

Тема:   [ Теория графов (прочее) ]
Сложность: 2
Классы: 6,7,8

В классе больше 32, но меньше 40 человек. Каждый мальчик дружит с тремя девочками, а каждая девочка – с пятью мальчиками.
Сколько человек в классе?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 389]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .